
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, VOL. 7,  1301 -1 3 14 (1 987) 

FLOW PAST SYMMETRIC CONVEX PROFILES WITH 
OPEN WAKES 

M. DORMIANI 

Stanford Synchroton Radiation Laboratory. Stanford Linear Accelerator Center. Stanford University, Stanford. C A ,  U.S.A. 

J. C. BRUCH, JR. 

Department of Mechanical and Environmental Engineering, Uniuersity of California, Santa Barhara, C A .  931 06, U.S.A. 

AND 

J. M. SLOSS 

Department of Mathematics, University of California, Santa Barhara, CA. U.S.A.  

SUMMARY 

A fixed domain approach and a Baiocchi type transformation in conjunction with a modified Schwarz 
alternating iteration scheme are used to solve problems of flow past truncated convex shaped profiles between 
walls in a logarithmic hodograph plane. The flows are such that a n  open wake or cavity is formed behind the 
profile. The basic numerical scheme consists of the successive over-relaxation finite difference approach over 
the whole domain of the problem with the use of a projection operation over only part of the domain. The 
numerical results that are obtained using this approach for the cases of a truncated circular arc profile and a 
wedge profile are compared with published results and are found to  be in good agreement. 
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INTRODUCTION 

Flow past a convex shaped profile and situated in a channel falls into the category of potential flow 
with a free streamline. Figure 1 shows such a case where the location of the free streamline is 
unknown. These two-dimensional, incompressible and inviscid flows are approximate models of 
the basic flows that occur in many practical engineering problems, for example the flow past bridge 
piers and channel constrictions, or a prototype under investigation in a wind tunnel. The objective 
is to provide basic potential-flow solutions to the problems and the determination of the location of 
the free streamline. 

Analytical investigations of bodies moving (stationary) in stationary (moving) fluid with 
formation of wakes and regions of discontinuity behind them constitute one of the most difficult 
and complex branches of fluid mechanics. Failure of potential flow theory to predict such 
phenomenon in fluid flow, and even more its use in analysing such flow, had been accepted as a 
natural defect of the ideal fluid assumption for a long period of time. Introduction of an idealized 
inviscid flow model, with free streamlines as surfaces of discontinuity in 1869 by Kirchhoff, was the 
first major contribution to the subject. Rirchhoff used the conformal mapping technique that had 
been used by Helmholtz in 1868 for treating plane jets formed by free streamlines. Since the 
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I 
Figure 1 .  The profile in the physical plane 

pioneering work of Kirchhoff, a number of potential flow models have been introduced to facilitate 
the mathematical analysis and to give the wake a definite configuration as an approximation to the 
inviscid outer flow. The purpose of these models is to bring the results of the potential theory of 
inviscid flows into better agreement with experimental measurements in fluids of small viscosity. 
The utility of the models is established by their capability of prediction of real fluid flow. Extensive 
reviews of the literature may be found in expositions by Birkhoff,' Birkhoff and Zarantonello,2 
Gilbarg3 Gurevich," Robertson,' Sedov,6 Robertson and Wisli~enus,~ Wehausen,' Woods' and 
wu~'o,ll 

The basic approach that will be used to solve the problem shown in Figure 1 is the fixed domain 
method in conjunction with the Baiocchi transformation.' This approach has had considerable 
success in solving various free and moving boundary problems.' 

Several researchers have used the Baiocchi method to solve fluid flow problems. Their method 
requires a suitable Baiocchi transformation in the hodograph plane. The first researchers to 
approach fluid flow problems in this manner were Brezis and Stampacchia.14 They reduced the 
study of a plane, steady, irrotational flow of a perfect and compressible fluid past a symmetric 
convex profile to one of a variational inequality in the hodograph plane. Brezis15 goes into 
more detail concerning the theoretical aspects of the previous paper; see also Reference 16. 
Sh imb~rsky '~  obtained an existence theorem for a subsonic symmetric potential flow of a 
compressible fluid in a symmetric plane channel with convex boundaries by solving a variational 
inequality in the hodograph plane. The method he used may be applied to obtain existence 
theorems for other plane flow problems. This work generalizes that of Brezis and Stampa~chia . '~  

Brezis and Duvaut" extended the work of Brezis and Starnpac~hia '~ to flows with wakes. They, 
however, considered an incompressible fluid in their analysis. Working in the hodograph plane 
Brezis and Stampa~chia '~  developed further properties of the solution using variational 
inequalities in the study of some two-dimensional subsonic flows past a given convex profile. For 
simplicity they confined themselves to the case of incompressible fluids. Roux" also studied the 
problem of subsonic compressible flow of a perfect fluid past a symmetric profile. He reduced the 
problem to solving a variational inequality with degenerate coefficients on the boundary of the 
domain. Special finite elements were used for the numerical computation. Ciavaldini et aL2' were 
concerned with the determination of subcritical irrotational steady flows for a compressible 
inviscid fluid past a given profile in the physical plane. When the profile is convex and symmetric, 
their investigation of the stream functions in the hodograph plane leads to a linear variational 
inequality. l 4  They give results using the finite element method as their numerical approximation; 
see also Reference 22. 
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Bourgat and D ~ v a u t ~ ~  presented numerical results for the elliptic variational inequality derived 
for the bi-dimensional steady flow of perfect fluid past a symmetric body formulated in the 
hodograph plane. With this approach they showed the existence of a one-parameter family of 
solutions. Furthermore, the study gave them a simple and effective method for calculating the 
solutions. gives theoretical results for unsymmetric profiles in an incompressible 
infinite flow field using hodograph planes. 

Tomarelli26-28 investigated the case for a symmetric body located in a channel. He did not 
consider the situation with a wake. Dormiani and Bruch2' and Bruch and Dormiani3' extended 
the work of Tomarelli by investigating cases of steady flow past a symmetric body located between 
walls and with a wake. Ciavaldini et studied stationary irrotational plane flows of an 
incompressible inviscid fluid past a profile between porous walls. They looked for the stream 
function in a functional form, especially convenient for a numerical approach. Using a finite 
element method of order one they solved this new problem in the physical plane and gave some 
numerical results. In all the previously referenced papers when the term hodograph plane is used it 
refers to the plane obtained by taking the natural log of the conjugate of the complex velocity plane 
and then multiplying by (-i). 

The problem presented herein has features which are different from the previously mentioned 
problems. Although the fixed domain approach and a Baiocchi type transformation are applicable, 
they will be used in conjunction with a modified Schwarz alternating iteration scheme. This latter 
scheme is convenient since the Baiocchi type transformation is not applicable over the entire 
solution domain as it was in the previous problems discussed. The numerical results that are 
obtained using this technique for flow past a profile between walls will be compared with those of 
Davis in Reference 32 for a truncated circular arc profile and those of Street33 for a wedge profile. 

FORMULATION OF THE PROBLEM 

Consider a profile with the shape of a convex curve contained in a channel which can be visualized as 
an infinitely wide rectangular conduit of height 2h (see Figure 1). The area behind the wedge and 
enclosed by the free streamlines can be considered either as a region filled with stagnant fluid (for 
example water) or as a cavity filled with air and fluid vapour (e.g. wdter vapour). The flow field has a 
pair of free streamlines on which the pressure and velocity are constants. Take these to be equal to 
p c  and qc, respectively. The channel height, 2h, the velocity on the boundary of the cavity, qc, the 
profile shape and separation angle are assumed to be known, whereas the upstream velocity in the 
channel, qm, and the free streamline location are to be found. 

The basic relations are established from the continuity equation and irrotationality condition. 
These equations in differential form for the flow field are 

where q1 and q2 are the fluid velocities in the x and y co-ordinate directions, respectively. The 
problem is formulated and solved in terms of the stream function $, which is defined so that 

a* a* 
JY ax q1 =- and q2 = --. ( 3 )  

Because of symmetry the region under consideration, 9, is bounded between the axis of symmetry, 
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AB, half of the profile, BC, the free streamline, CD, and the wall of the channel, D’A’. In this region 
the stream function satisfies the continuity equation identically and the irrotationality condition 
gives Laplace’s equation 

The boundary ABCD forms the + = 0 streamline and $ = qm h on the wall D‘A’. The downstream 
jet half-width dc  is found from the conservation of mass relation 

4 c d c  = q m h  ( 5 )  

and qc may be set to unity without any loss of generality. Therefore, the mathematical formulation 
of the problem in the physical plane becomes: find +(x, y) such that 

V 2 + = 0 ,  in 8 (64  
and 

+(x,y) =0, on ABCD, 

lim +(x,y)=yq,,, on AA’, 
x - - z I  

Igrad+I=q, on CD. (6f) 

Note that the location of the free streamline is unknown in advance. 

TRANSFORMATION TO A LOGARITHMIC HODOGRAPH PLANE 

The flow region shown in Figure 1 may be mapped conformally onto a region of the logarithmic 
hodograph plane. From the flow pattern it may be seen that the velocity, q, at any point, is 
always less than or equal to q c .  At the stagnation point B, q = 0; far upstream, q = q m ;  and on 
the free streamline, q = 4,. 

The transformation (x, y) -+ (0, a), where 0 is the polar angle of velocity and a = - In(q/q,) maps 
the problem in the physical plane onto the logarithmic hodograph plane. Under the conformal 
mapping, the values of the harmonic function + are unchanged on the boundaries of the region. 

The form of the governing equation, as is shown below, also remains the same. It is necessary to 
find the differential expression for the equation V2 +(x, y) = 0, which is expressed in terms of the co- 
ordinates, x and y, in terms of the new variables, 8 and a. In the transformation (x,Y)-+(~,cT) 
use is made of 

ea + i8 

dx + i dy = -(d4 + id+). (7) 
4 c  

Since this equation is in terms of total differentials, it follows that 
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Differentiating and simplifying gives 

*-!!!!! - a*=a4  
a. ae' ae '  

Eliminating 4 from equation (9) yields 

(9) 

The governing equation and boundary conditions are, therefore 

where R is the image of region 9! under the transformation, and r is the representation of the 
profile in the logarithmic hodograph plane (see Figure 2). On r, o = I (@. Note that the location 
of 

The region R of the problem in the logarithmic hodograph plane is next divided into two 
overlapping regions, R, and R, (see Figure 3) such that R = R ,  u R,  and 

and the point (0, o,) are unknown a priori. 

R 

B 

3 8' 
Figure 2. The problem in the logarithmic hodograph plane ((@,a) plane) 
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B 

0 9' 
Figure 3. The problem in the logarithmic hodograph plane ( ( 0 , ~ )  plane) with the overlapping regions 

where 8, is the value of 8 at the stagnation point, 6, is the value at the detachment point of 
the cavity boundary from the profile and ti is an angle satisfying 8, < ti< 8,. Note that the 
overlapped region is 

R, = R,n R,. 

Define an integrated stream function by using the Baiocchi type transformation 

on the region R,. Note that u > 0 in R, .  Since $ > 0 thereafter differentiating, 

a Z u  a Z u  I 

V2u(6, a) = __ + - = - R(B)e-" in R, a82 aa2 

where 

the algebraic radius of curvature, in which the co-ordinates X ( 0 )  and Y(0)  represent the surface 
of the profile in terms of the parameter 6, the angle between the tangent to the curve and the 
x-axis. Next, the dependent variable u is continuously extended across the free surface r, on 
which u = 0,into 

Rex, = { ( e , m ,  < 0 < e,,o < a < i(e)), 
such that u is zero in Rex,. Let R, = R,  + Rex, + r. Then the following complementarity system 
is defined in R,: since 

u > 0, [ - v2u(e. 01 - R"(8)e - "1 2 0, 
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Boundary conditions for the overlapped region, R,, are needed. On the line 

r l={(e,a)le=e,,  0-0) (1 5 )  

using the definition of u (equation (12)) define 

u(O,, CI) = - e'$(e,, Z) dZ, on rl  . (16) 
e-' 4 c  r 0 

This boundary condition is used on rl for the region R,. From the definition of u, u, can be 
found, and thus 

Therefore, the boundary condition on 

r: = ((e, o)le = cc, 0 2 i(e)}, (18) 

for the region R, is equation (17). Furthermore, $(O,  CI) = 0 on ri, where r'; = { (6, a)[ el d 8 Q 15, 
o = l(0)). Set Tz = ri + r;. Hence, the problem can be stated in the two overlapping regions as 
follows. 

On region R,: 

and on region R,: 

V2$(0,0) = 0, in R,, 

g(e,o)=o, o a a , ,  

u(e,, CI) = 0, o 6 o, (20c) 

u(Ol,o)=- e'$(O,,z)dz, on rl ,  (204 
eq: s: 

where xRP is the characteristic function defined by xRP = 1 in R, and xRP = 0 otherwise. 

ALTERNATING ITERATION SOLUTION 

In this section, an iteration solution scheme is described upon which the numerical method given 
later is based. The method is called the Schwarz alternating procedure. A proof and justification 
that the method is valid in the case considered is not given. However, the method will be used 
none the less, as if it were applicable for computational purposes; see Reference 34 for details. 

The scheme permits one to solve certain boundary value problems whenever the region of 
the problem consists of two overlapping regions with smooth boundaries. This is the nature of 
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the problem formulated in the previous section where rl and r2 are part of the boundary of the 
overlapped region. The procedure can be described as follows. 

By defining an arbitrary continuous boundary condition on Tz the problem for $ in the region 
R,  is solved. The solution provides values on r l  which together with the other prescribed 
boundary conditions furnish continuous boundary conditions for u for the region R,. This solution 
determines the values of u on r2 and thus provides boundary conditions for $ on Tz, and with 
prescribed boundary conditions on the other boundaries of R,, the problem can be solved for I), 
and after that u and the region R,  can again be considered. Continuing alternately in this way and 
switching between regions R, and R,, generates a sequence which it is hoped converges to functions 
which are identical in the overlapped region, R,.  

CO-ORDINATE TRANSFORMATIONS 

The expressions describing the co-ordinates of the physical plane in terms of the co-ordinates 
of the logarithmic hodograph plane, i.e. x = x(0, a) and y = y(B, a) are needed for calculating the 
co-ordinates of the wake boundary. These expressions are stated in this section. 

The desired equations are 

da  

and 

On the boundary of the wake the velocity is constant and is equal to qc; therefore a = 0 and 
do = 0. Furthermore $ = const.; hence d$/dO = 0, and equations (21) reduce to 

and 

1 a* 
4 c  a0 dy = --sinOd0,O < 0 d O , ,  CJ = 0 

NUMERICAL PROCEDURE 

The problem posed in the logarithmic hodograph plane by equations (19) and (20) is 
formulated in a region which is unbounded in the positive a-direction. For numerical 
computations the region will be truncated. Toward this end choose a a" which is sufficiently 
large so that for all practical purposes the value of $ and u for a > a,, is approximately zero. 
Note that since the function defining a is logarithmic, a = -ln(q/qc), and u is weighted by an 
exponential function, the truncation has little or no effect on the numerical results. Hence, a, 
provides an upper bound for R ,  u R,. The solution algorithm is a finite difference successive 
over-relaxation scheme for both u and $ with projection for the u-problem only. A grid of mesh 
points is superimposed on the bounded region, where each node is specified by row i and column 
j .  Therefore, the field equation for $, equation (19a), can be written as the following difference 
equation: 
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where A0 and A 0  are the spacings in 8 and a directions, respectively, a and P provide for unequal 
divisions for mesh points, o is the over-relaxation parameter and is the value of $ at node 
i, j for the nth iteration. Similarly, for u in the region R ,  (see equation (20a)): 

1 

where E is some fixed positive constant. 
The values of the boundary conditions that are given, such as equations (19b)-(19f) and 

equations (20b) and (20d), are directly substituted into the difference equations. Note that on the 
boundary 

r3 = {(e ,O) io  G e G el ,  0 = a,}, 

which corresponds to the stagnation point in the physical plane, II/ % 0, for the region R,. On the 
boundary 

r4 = {(e,a)ie, G e G e,, 0 = a,,}, 
$ FZ 0 also, and equation (17) yields 

u+u,=o 

which provides the appropriate boundary condition. 
The boundary conditions for the overlapped region are given as follows. From the definition of 

region R,, for numerical analysis the value of 6 is chosen so that the first column on interior 
mesh points of region R ,  coincides with rl and forms the boundary for the R ,  region. The values of 
$ at the mesh points on r'i are calculated by using equation (19e), in which u, is approximated by a 
central difference expression; therefore 

It should be noted that for the numerical computations the first mesh point on rl at (ti, ci), i = 2 
must be such that o2 3 l(ti). 
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On the other hand the last column of interior mesh points in region R,, which are on the line rl, 
forms the boundary of the region R,, and equation (20d) is used to calculate the boundary 
condition. The integral in this equation is approximated by using a mid-point formula; hence 

The iteration sequence is started by setting the boundary conditions for $ in the region R,, and a 
zero initial guess for the interior I){:). Then using equations (23), starting from the lower left interior 
point and moving to the right along mesh points and upwards until all the interior points in R, are 
covered, the are obtained. The next step is to set the boundary conditions for R, making use of 
the newly calculated values for the overlapped region, a zero initial guess for the interior @, using 
equations (24), and again starting from the lower left point in the region R ,  and moving to the right 
and upwards in this region until the entire mesh is covered; this provides new values for points on 
the overlapped region and hence new boundary conditions for $ in region R,. 

This alternate sweeping of the two regions continues until the conditions (25) are satisfied. Since 
numerical values for u inside the free boundary, l-, are non-zero and those on the boundary and 
outside of it are zero, the zero points bordering non-zero points in the R ,  region determine this free 
boundary. 

The velocity on the boundary of the cavity, qc, is assumed to be known but, as stated before, the 
upstream velocity qm is, like the free boundary, unknown a priori and is to be found as part of the 
solution. Therefore, different values for om, where om = - ln(q,/q,), are used until the best one is 
found. The calculation sequence is that of assuming the mesh points on the boundary 

rs = {(e,o)le = 0, o < 0 < c,}, 
starting from the point with minimum o and going upwards. For each assumed om the alternating 
iteration sequence described above is performed and co-ordinates of the wake, using 
equations (22), are calculated. 

For calculating co-ordinates of the boundary of the wake equations (22) are integrated between 
two adjacent mesh points using the trapezoidal rule, which yields 

where (a$/da) I j  is approximated by its forward difference expression 

Once the co-ordinates of the wake are determined, the cavity distance, d,, which is the distance 
between the boundary of the cavity and the wall at infinity (see Figure 1) is calculated. Then from 
equation (5) the upstream velocity q m ,  or consequently om, is calculated and is compared to the 
assumed value of om. The mesh point corresponding to the minimum difference between the 
calculated upstream velocity and assumed upstream velocity is chosen for the desired value for 
om. It is evident that the finer the mesh points are on boundary Ts the better is the accuracy in 
the determination of 0,. 
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COMPUTATIONAL RESULTS 

Although the numerical method discussed in the previous section is general and can be carried out 
for any convex symmetric profile, results are given for free streamline flows past a truncated circular 
profile since there are previous calculations close to this case in the literature for comparison 
purposes. 

Figure 4 shows the results for an open profile which has the shape of an arc of a circle and for 
which the free streamline leaves the profile at 60 O from the stagnation point (8, = 30 "). The profile 
is located between walls each having a distance h = 4.0 from the axis of symmetry. To obtain the 
results for the case where there are no walls the wall distance is increased sufficiently so that the 
walls would have no effect on the solution. For this case h was taken to be 25. This case is also 
shown in Figure 4 along with the results given by Davis in Reference 32. As can be seen from the 
Figure, the shapes and locations of the free streamlines are in appropriate agreement. The velocity 
on the boundary of the cavity was assumed to be qc = 1, the over-relaxation parameter was taken 
to be o = 1.6, the stopping criterion for equations (25) was E = lop4, h = 4.0, cru = 4-621, the 
number of divisions in the 8 and cr directions was 20 with variable A8 and ACT. The upstream 
uniform fluid velocity was computed to be qa, = 0745. For the case when h = 25-0, the previous 
parameters were also used except that the numbers of divisions in the 8 and cr directions were 20 
and 40, respectively, with variable A8 and ACT. The upstream uniform velocity was computed to be 
qm = 0.918. 

Another limiting case of the theory is the situation where the profile is a wedge, as shown in 
Figure 5. This is the case solved by Street.33 The logarithmic hodograph plane for this case is 
shown in Figure 6. 

As an example, numerical computations were carried out for a wedge with a half angle of 
p= 30°, side length of c = 3.15, and wall distance of 2h = 8-0; the velocity on the boundary of 
the cavity was assumed to be qc = 1. The logarithmic hodograph was truncated in the cr direction 
at cru = 4.621. The over-relaxation parameter was chosen to be o = 1.6; the criterion for stopping 
the iteration was E = and the number of divisions in the 8 and cr directions was 40, 
i.e. A8 = (n/6)/40 and Acr = (4.621)/40. The upstream velocity was found to be qm = 0501 and 
the co-ordinates of the boundary of the wake were calculated and are plotted in Figure 7. Also 

Y 2t 
X 

Figure 4. Results for a truncated circular arc profile: - present solution with walls (h  = 4.0); A present solution with 
walls (h = 25.0); 0 Reference 32 
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Figure 5. Flow past a wedge in a channel 
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D L 8 -  
Figure 6. Logarithmic hodograph plane ((0,a) plane) for a wedge in a channel 

1 0.375 

x/2h 
Figure 7. Location of the free streamline:- present solution; 0 Street 

shown on the Figure are results given by Street.33 Street's solution for the wedge profile is 
given in terms of infinite integrals of elementary functions, from which numerical results can 
easily be obtained. He also gives some of the results in graphical form. As can'be seen the two 
sets of results are in agreement. 

CONCLUSIONS 

Problems of flow past truncated convex shaped profiles between walls have been solved in the 
logarithmic hodograph plane, the ( 6 , ~ )  plane, using a fixed domain approach and a Baiocchi type 
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transformation in conjunction with a modified Schwarz alternating iteration scheme. The 
numerical scheme used in the iteration scheme was the successive over-relaxation finite difference 
approach for both the $-problem and the u-problem, whereas the projection operation was used 
only on the u-problem. The fundamental difference between this problem and the problems 
mentioned in the Introduction which were solved using the integral transform approach is that 
there are two regions, instead of one, to contend with in the logarithmic hodograph plane. 

The numerical algorithm that has been derived is simple and efficient and, as seen from the 
comparisons of results, gives accurate solutions. Thus, the solution approach that has been derived 
can be applied to general truncated convex shaped profiles between walls whose profile shape is a 
priori known, as opposed to other schemes where the profiles are obtained as part of the solution. 
Furthermore, the numerical scheme gives the velocity along the profile which is the curve r in the 
(6, 0)-plane as part of the solution. This is the line that separates the region where u > 0 from that 
where u = 0. This free boundary problem is different from other free boundary type problems in 
that the free streamline CD is a horizontal line in the (Q,o)-plane, whereas the velocity distribution 
on BC becomes that on r, the boundary sought in the (Q, 0)-plane. 
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